Code No: 5405AQ JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech II Semester Examinations, December – 2018/January - 2019 THEORY OF COMPUTATION

(Computer Science)

Time: 3hrs

Max.Marks:75

 5×5 Marks = 25

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

1.a) b) c) d) e)	Define Finite automata. Also Define computation. Give examples. What is Context free grammar? Give Examples. Discuss the variants of tuning machine. Discuss decidability. Discuss P and NP problems.	[5] [5] [5] [5]			
	PARI - B = 50				
		Iurks 50			
2.a)	Differentiate between DFA and NFA.				
b)	Draw DFA which accepts even number of a's over the alphabet $\{a, b\}$.	[5+5]			
3.	Construct the NFA with the language which accepts all and only the strings of 0's and				
5.	1's that end in 0. Obtain the equivalence DFA for it.	[10]			
4.	Construct a context free grammar which accepts N(A) where A is $(\{q_0, q_1, q_2\}, \{a, b, c\}, \{a, b, z_0\}, \delta, q_0, z_0, q_2)$ where δ is given by $\delta(q_0, a, z_0) = (q_0, az_0)$ $\delta(q_0, b, z_0) = (q_0, bz_0)$ $\delta(q_0, a, a) = (q_0, aa)$ $\delta(q_0, b, a) = (q_0, ba)$ $\delta(q_0, a, b) = (q_0, bb)$ $\delta(q_0, c, z_0) = (q_1, z_0)$ $\delta(q_0, c, a) = (q_1, a)$ $\delta(q_0, c, b) = (q_1, b)$ $\delta(q_1, a, a) = (q_1, \epsilon)$ $\delta(q_1, \epsilon, z_0) = (q_2, z_0)$	[10]			
	$o(q_1, \in, z_0) = (q_2, z_0)$	[10]			

Download all NOTES and PAPERS at StudentSuvidha.com

OR

5. Give a grammar in Chomsky Normal Form that generates the same language as the grammar $G = (V, \Sigma, R, S)$ with $V = \{S, X, Y\}, \Sigma = \{a, b, c\}$, and R being the following set of rules: $S \rightarrow XY$ $X \rightarrow abb \mid aXb \mid epsilon$ $Y \rightarrow c \mid cY$. [10]

- 6.a) How to design Turing machines? Discuss.
- What are the components of Turing machines and give description of Turing Machines. b)

				[5+5]
		OR		
7.	Construct the Turing machine that equal to number of b's.	accepts all a's and	b's such that	number of a's is [10]
8.	Discuss the decidable problems concer a) Regular languages b) Context free languages.	rning		[5+5]
		OR •		
9.	Describe mapping reducability.			[10]
10.	Discuss cook Levin Theorem	OR		[10]
11.	Discuss vertex cover problem.			[10]
	download	00000		